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ABSTRACT

We have evaluated the Green-Kubo relations for the viscosities of a biaxial nematic liquid

crystal by performing equilibrium molecular dynamics simulations. The viscosity varies by

more than two orders magnitude depending on the orientation of the directors relative to the

stream lines. The molecules consist of nine fused Gay-Berne oblates whose axes of revolution

are parallel to each other and perpendicular to the line joining their centres of mass. This gives a

biaxial body the length to width to breadth ratio of which is 5:1:0.4. The numerical evaluation

of the Green-Kubo relations for the viscosities is facilitated by the application of a Gaussian

director constraint algorithm that makes it possible to fix the directors in space. This does not

only generate an inertial direcor based frame but also a new equilibrium ensemble. In this

ensemble the Green Kubo relations for the viscosities are simple linear combinations of time

correlation function integrals whereas they are complicated rational functions in the conventional

canonical ensemble.

KEY WORDS: biaxial nematic liquid crystals; director constraint algorithms; Gay-Berne

potentials; Green-Kubo relations; molecular dynamics simulations; viscosities
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1. INTRODUCTION

Transport phenomena in liquid crystals are much richer than in isotropic fluids. The

reason for this is that the lower symmetry of the liquid crystals allows cross couplings between

thermodynamic forces and fluxes that are forbidden in isotropic fluids. The diffusion

coefficients and the thermal conductivities are second rank tensors with two or three

independent components depending on whether the symmetry is uniaxial or biaxial. The

viscosity is a fourth rank tensor with 81 independent viscosities in the general case. In an

isotropic fluid there are three independent components: the shear viscosity, the volume viscosity

and the vortex viscosity. In uniaxial systems there are seven viscosities and in biaxial systems

there are fifteen. There are cross couplings between tensors of different rank and parity. For

example, the symmetric traceless strain rate cross couples with the antisymmetric pressure. This

gives rise to director alignment phenomena in shear flows.

The first evaluation of the viscosities of a liquid crystal model system was done by Baalss

and Hess in 1986 [1]. They performed a shear flow simulation of a perfectly aligned nematic

iquid crystal. In order to decrease the computational work they devised a mapping of the liquid

crystal onto an isotropic Lennard-Jones fluid. Equilibrium fluctuation relations for the

viscosities of uniaxial nematic liquid crystals were first derived by Forster using projector

operator techniques [2]. The same relations were derived by Sarman and Evans by applying the

SLLOD equations of motion for planar Couette flow and linear response theory [3]. These

relations were evaluated numerically for the Gay-Berne fluid [4]. In a later work we devised a

Gaussian constraint algorithm that made it possible to fix the director in space [5]. This makes a

director based frame an inertial frame. One also generates a new equilibrium ensemble. It turns

out that the Green-Kubo relations for the various viscosity coefficients are linear combinations

of time correlations function integrals in this ensemble whereas they are complicated rational

functions in the conventional canonical ensemble. The Green-Kubo relations for the various

viscosity coefficients have recently been generalised to biaxial nematic liquid crystals [6]. In this

work we use these relations to calculate some of the viscosities of a biaxial liquid crystal. The

model system consists of molecules composed of nine Gay-Berne oblates [7]. Their axes of
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revolution are parallel to each other and perpendicular to the line joining their centres of mass.

The length to width to breadth ratio is 5:1:0.4. This system has been shown to form biaxial

nematic phases at high densities.

2. THEORY

The degree of ordering in a biaxial liquid crystal is described by two second rank order

parameters [8,9]

Q00
2 ≡

1

2
(3cos2 θ − 1) , (2.1a)

Q22
2 ≡

1

2
(1 + cos2 θ )cos2φcos2ψ − cosθsin 2φ sin2ψ , (2.1b)

where θ, φ and ψ are the Euler angles relative to a laboratory based coordinate system.  The

first parameter is the well-known uniaxial order parameter. It is zero in isotropic phases and

finite in uniaxially or biaxially symmetric phases. The other parameter is the biaxial order

parameter. It is zero in isotropic and uniaxial phases and it is finite in biaxial phases. The order

parameters can be defined more clearly if we form symmetric traceless order tensors based on

the various principal molecular axes,

Qss ≡
3

2

1

N
ˆ s iˆ s i −

1

3
1

i=1

N

∑
 

 
 

 

 
 , (2.2)

where N is the number of particles, 1 is the unit second rank tensor and ˆ s i is one of the

principal axes ˆ u i , ˆ v i or ˆ w i of the molecule, see Fig. 1. This gives three different order tensors, 

Quu, Qvv and Qww . Using these definitions the order parameters can be rewritten as 

Q00
2 = ez

• Qww
• ez (2.3a)

and

Q22
2 =

1

3
ex

•Quu
•ex + ey

•Qvv
•ey − ey

• Quu
•e y − ex

• Qvv
• ex , (2.3b)

where (ex , ey , ez) is the base of a laboratory based coordinate system. The parameter Q00
2 is

the largest eigenvalue of the order tensor Qww . In isotropic phases this parameter is zero and it

4



is finite in uniaxial and biaxial phases. The parameter Q22
2 is zero in isotropic and uniaxial

phases and it is finite in biaxial phases.

ˆ u 

ˆ v 

ˆ w 

a

b

ˆ w 

Fig. 1

Planar projections of the molecular model. a) The ˆ u -axis is perpendicular to the plane of

the paper. b) The ˆ v -axis is perpendicular to the plane of the paper.

In order to make sense of these order parameters we have to define the coordinate system.

One calculates the three order tensors Quu, Qvv and Qww . Then one computes the largest

eigenvalue of each of them. One defines the eigenvector pertaining to the largest of these

eigenvalues, n1, as the x-direction. The eigenvector corresponding to the second largest
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eigenvalue, n2, is defined as the y-direction. The z-direction is given by n3 which is the

eigenvector corresponding the smallest eigenvalue. These eigenvectors are independent within

certain limits and they are not strictly orthogonal. They are constantly diffusing on the unit

sphere at angular velocities defined as Ωµ = nµ × ˙ n µ , µ=1,2,3. This problem can be solved by

applying the Gaussian director constraint algorithm, described below, to fix the directors.

We are going to use a model system consisting of rigid bodies. The equations of motion

for such a system are,

˙ q i =
p i

M
, (2.5a)

and
˙ p i = Fi – αpi , (2.5b)

where

α = pi
• Fi

i=1

N

∑ pi
2

i=1

N

∑ , (2.5c)

qi and pi are the position and the linear momentum of particle i, M is the molecular mass, Fi is

the force on particle i due to interactions with other particles. The parameter α is a Gaussian

thermostatting multiplier that is determined in such a way that the translational kinetic energy

becomes a constant of motion [10]. An important property of this thermostat is that it does not

exert any torque on the system. It does consequently not interfere with the director alignment or

rotation. In angular space we employ,

ˆ ˙ s i =ωi ×ˆ s i (2.6a)

and the Euler equations,

Ip
• ˙ ω pi = ω pi × Ip

• ωpi + Γ pi + λµ •
∂Ωµ

∂ω piµ =1

3

∑ , (2.6b)

where 

Ip =

Ipuu 0 0

0 Ipvv 0

0 0 Ipww

 

 

 
 
 

 

 

 
 
 

,

the inertia tensor, ˆ s i equals ˆ u i , ˆ v i or ˆ w i , the principal axes of molecule i, ωpi is the molecular

angular velocity, Γpi is the torque due to interactions with other particles, Ipαα, {α=u,v,w}, is
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the moment of inertia around the α-axis. Do not confuse the subscript ’α’ with the

thermostatting multiplier α. The subscript ‘p’ denotes the principal frame. The Gaussian

constraint multiplier λµ keeps Ωµ equal to zero and thereby the director orientations are fixed

in space. The λµ ' s are determined by the requirement that 
˙ Ω µ = 0, µ = 1,2,3. (3.2)

This is actually six independent equations because there are two independent components of

each of the Ωµ's and the λµ ' s . Provided the initial values of the Ωµ's are zero they will remain

zero at all times and the directors will remain fixed.

The αβ element of the pressure tensor is denoted by pαβ . We employ the Irving-

Kirkwood [14] definition of the pressure,

〈P〉V =
p ipi

m
− ri Fi

 
  

 
  

i=1

N

∑ =
p ipi

mi=1

N

∑ − rij
j >i
∑

i=1

N

∑ Fij , (3.7)

where rij = r j − ri and Fij is the force acting on particle i due to interactions with particle j.

3. MODEL SYSTEM AND TECHNICAL DETAILS

Our molecules consist of a string of Gay-Berne oblates [8] where the axes of revolution of

the oblates are parallel to each other and perpendicular to the line joining their centres of mass.

In order to decrease the number of interactions we replace the Lennard-Jones core by a purely

repulsive 1/r18 core. The site-site interaction potential becomes,

U(r1α2β ,ˆ u 1, ˆ u 2) = 4ε(ˆ r 1α 2β ,ˆ u 1, ˆ u 2 )
σ0

r1α2β  – σ(ˆ r 1α2β , ˆ u 1,ˆ u 2)  + σ0

 

 
 
 

 

 
 
 

18

, (3.1)

where r1α 2β is the distance vector from the centre of mass of interaction site α of molecule 1 to

the centre of mass of interaction site β of molecule 2, ˆ r 1α 2β is the unit vector in the direction of

r1α 2β, , r1α 2β is the length of r1α 2β and ˆ u 1 and ˆ u 2 are the unit vectors parallel to the axis of

revolution of the oblates of molecule 1 and 2 respectively. The parameter σ0 is the length of the

major axis of the oblate. The strength and range parameters ε(ˆ r 1α2β , ˆ u 1, ˆ u 2) and
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σ(ˆ r 1α2β , ˆ u 1, ˆ u 2) are given by

ε(ˆ r 1α2 β , ˆ u 1 , ˆ u 2)  =  ε0 1  – χ 2 ˆ u 1 • ˆ u 2( )2[ ]−1 /2

• 1  –  
′ χ 

2

(ˆ r 1α 2β • ˆ u 1 + ˆ r 1α2β • ˆ u 2)2

1  + ′ χ ˆ u 1 • ˆ u 2  
 +  

(ˆ r 1α2β • ˆ u 1 – ˆ r 1α 2β • ˆ u 2 )2

1  – ′ χ ˆ u 1 • ˆ u 2  
 

 

 
 
 

 

 
 
 

 
 
 

  

 
 
 

  

2

(3.2)

and

σ(ˆ r 1α2β , ˆ u 1, ˆ u 2) = σ 0 1 –
χ
2

(ˆ r 1α 2β • ˆ u 1 + ˆ r 1α2β • ˆ u 2)2

1  + χˆ u 1 • ˆ u 2  
+

(ˆ r 1α2β • ˆ u 1 – ˆ r 1α 2β • ˆ u 2 )2

1  – χˆ u 1 • ˆ u 2  
 

 

 
 
 

 

 
 
 

 
 
 

  

 
 
 

  

–1 /2

.

(3.3)

The parameter χ≡(κ2–1)/(κ2+1), where κ is the ratio of the axis of revolution and the axis

perpendicular to the axis of revolution and χ′≡( ′ κ 1/2–1)/( ′ κ 1/2+1), where ′ κ is the ratio of the

potential energy minima of the side to side and the end to end configurations. The depth of the

potential minimum is given by ε0. Note that we use purely repulsive potentials, so there are no

potential minima. However, we keep the values of ′ κ , χ′ and ε0 adjusted for a Lennard-Jones

potential when we replace it by a purely repulsive potential in Eq. (3.1). The molecules consist

of nine interaction sites. Their axis vectors ˆ u i are parallel to each other and perpendicular to the

line joining the centres of mass. The distance between the centres of mass of the oblates is σ0/2,

see Fig. 1. The parameters κ and ′ κ have been given the values 0.40 and 0.20 respectively.

This gives a length to breadth to width ratio of 5:1:0.40. The numerical results in this work are

expressed in units of σ0, M and τ =σ0(M/ε0)1/2. The moment of inertia around the ˆ w i axis is

equal to 0.25Mσ0
2. The moments of inertia around the ˆ u i and the ˆ v i -axes are equal to

1.8Mσ0
2. The equations of motion have been integrated by a fourth order Gear predictor

corrector with a time step of 0.001τ. The cutoff radius beyond which the interaction potential

and the interaction forces are set equal to zero is 1.5σ(ˆ r 1α2β , ˆ u 1, ˆ u 2) . Thus the cutoff radius is

orientation dependent. The expressions for the forces and the torques, which are rather

complicated, are given in ref. [11]. We used cubic boundary conditions. We employed 2025

molecules which together contain 18,225 oblate Gay-Berne interaction sites.

8



4. CALCULATIONS, RESULTS AND DISCUSSION

We have evaluated the viscosities of this model system at a reduced density of 0.19 and a

reduced temperatur of 1.00. This is very complicated and the theory is described elsewhere

[12]. However, it is very easy to define and physically interpret effective viscosities 

〈 pαβ 〉 = −ηγ
∂uβ

∂rα
(4.1)

where uβ is the velocity in the nβ direction that varies in the nα direction in a director based

coordinate system. The nγ direction is perpendicular to the vorticity plane, see fig. 2. Thus

∂uβ /∂xα is the strain rate, ηγ is the effective viscosity and 〈 pαβ〉 is the αβ  element of the

pressure tensor. This gives six different viscosities. Each of the three directors can be

perpendicular to the vorticity plane and either of the two remaining directors can be

perpendicular to the stream lines. If {α,β,γ } is an even permutation of {1,2,3} the viscosity is

denoted ηγ and it is denoted η-γ for odd permutations. They can be expressed in terms of time

correlation functions of the various elements of the pressure tensor,

η1 = η2323;Ω + γ 11;Ω + 2η231;Ω (4.2a)

η−1 = η2323;Ω + γ11;Ω − 2η231;Ω (4.2b)

η2 = η3131;Ω + γ 22;Ω + 2η312;Ω (4.2c)

η−2 = η3131;Ω + γ 22;Ω − 2η312;Ω (4.2d)

η3 = η1212;Ω + γ 33;Ω + 2η123;Ω (4.2e)
and

η−3 = η1212;Ω + γ 33;Ω − 2η123;Ω (4.2f)

We use a shorthand notation for the time correlation functions,

  
ηαβγδ ;Ω ≡ βV ds pαβ

so (s)pγδ
so (0)

eq ;Ω0

∞
∫ (4.3a)

  
γαβγ ;Ω ≡ βV ds pα

a (s) pβγ
so (0)

eq;Ω0

∞
∫ (4.3b)

  
ηαβγ ;Ω ≡ βV ds pαβ

so (s) pγ
a(0)

eq;Ω0

∞
∫ (4.3c)

and
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γαα ;Ω ≡ βV ds pα
a(s) pα

a (0)
eq;Ω0

∞
∫ (4.4c)

where

  
pαβ

so =
1

2
pαβ + pβα( ) −

1

3
Tr P( )

the symmetric traceless pressure and

pα
a = −

1

2
εαβγ pγ β

the antisymmetric pressure. The subscript eq denotes an equilibrium ensemble. The subscript

eq;Ω denotes an equilibrium ensemble where Ω is forced to be zero. If α =β and γ =δ the

correlation functions ηαβγδ are independent of whether Ω is constrained or not, i. e. the normal

stress difference correlation functions are ensemble independent. The TCFI’s involving the

antisymmetric pressure are zero if Ω is unconstrained. Note that ηαβγ ;Ω = γγαβ;Ω because the

pressure tensor is invariant under time reversal.

u=nβγ rα

Fig. 2

A strain rate ∇u =γnαnβ is applied. The director nβ is parallel to the stream lines. The

velocity varies in the nα direction. The director nγ is perpendicular to the vorticity plane and
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the plane of the paper. The axis parallel to this director has been omitted. We denote the

effective viscosity ηγ if αβγ is an even permutation of {1,2,3} and η–γ for odd permutations.

The various viscosities are given in table I. We have η-2 > η1 > η3 >> η-3 ≈ η-1. > η2. 

Table I. The Miesowicz viscosities at a reduced density of 0.19 and a reduced temperature of

1.00.
                                             

viscosity estimate                                             

η1 9.7±0.3

η−1 0.57±0.06

η2 0.19±0.005

η−2 25±3

η3 4.9±0.3

η−3 0.59±0.01                                            

The ratio of the smallest and the largest viscosity coefficients is more than two orders of

magnitude. The effective viscosity is consequently very orientation dependent. It is easy to

realise that η-2 is the largest viscosity because this is the effective viscosity when n1 and thereby

the ˆ u i axes are parallel to the stream lines and n3 and the ˆ w i axes are parallel to the vorticity

plane and perpendicular to the stream lines, see fig. 3. This means that it is very hard for the

molecules to pass each other because the broadsides of the molecules face the stream lines and

hit each other. It is also easy to realise that η2 is the smallest viscosity because in this orientation

n3 and the ˆ w i axes are parallel to the stream lines and n1 and ˆ u i are perpendicular to the stream

lines and parallel to the vorticity plane. This makes it very easy for the molecules to slide past

each other thus decreasing the viscosity.
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u=n1γ z  [u=n3γ x]
n3  [n1]

n1  [n3]

Fig. 3

Approximate orientation of the molecules when n2 is perpendicular to the vorticity plane.

The symbols within square brackets pertain to the situation when n3 is parallel to the stream

lines. The effective viscosity is η-2. The symbols outside the square brackets pertains to the

case when n1 is parallel to the stream lines. The effective viscosity is η 2.

5. CONCLUSION

We have devised a liquid crystal model potential consisting of nine oblate Gay-Berne

interaction sites. Their axes of revolution are parallel to each other and perpendicular to the line

joining the centres of mass. The length to breadth to width ratio is 5:1:0.4. We have removed

the attractive part of the core of the Lennard-Jones core of the Gay-Berne potential and replaced

it by a purely repulsive 1/r18 potential in order to reduce the number of interactions. This makes

the system faster to simulate. This is useful when one wants calculate transport properties

which often require very long simulation runs to converge.

In order to generate an inertial director based frame we use a director constraint algorithm

that keeps the directors fixed and orthogonal. This constraint algorithm also generates a new

equlibrium ensemble. Most time correlation functions and thermodynamic properties are the
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same in this ensemble as in the conventional canonical ensemble. An important exception is the

Green-Kubo relations for the viscosities. They are linear combinations of time correlation

function integrals in the fixed director ensemble whereas they are complicated rational functions

in the conventional canonical ensemble.

At high densities our liquid crystal model system forms a biaxial nematic phase. We have

used the director constraint algorithm to evaluate the Miesowicz viscosities of this phase. They

can be regarded as the effective viscosities when one director is parallel to the stream lines, one

director is perpendicular to the vorticity plane and the last one is perpendicular to the shear

plane. There are six such viscosities. They were found to be highly orientation dependent. The

largest and the smallest viscosities differed by more than two orders of magnitude!
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